For example on wikipedia for Switzerland it says the country has an area of 41,285 km². Does this take into account that a lot of that area is actually angled at a steep inclination, thus the actual surface area is in effect larger than what you would expect when looking onto a map in satellite view?
Due to the fractal nature of geometery, all they would have to do is use more fine-grained measurements. :)
Lets now measure all coastlines with the minimum increment possible, the planck length.
That would work for the perimeter, but not for the area.
If you’re measuring surface area it would.
That would work for the perimeter, but not for the area.
It works exactly the same!
If I go over our parking lot with a 1m^2 granularity, I get 100m^2. If I go with 1cm^2 granularity, I get 110m^2 because I catch the sides of the curbs, potholes, etc.
https://demonstrations.wolfram.com/3DSnowflakeFractals/
I interpreted your reply to njm1314 as meaning “we don’t need to measure inclination to cheat, we can do that by simply increasing our precision”
I see! Then I understand your response. :)
Fractals are self-replicating while surface area or coastline of a country are inherently finite. You could very accurately measure the surface area, but there’s no reason to do that.