Links a list where the three top spots substantiate the claim, followed by a comparatively large 8% drop.
To add a bit of nuance: There are definitely exceptions to the claim. But if I had to make a blanket statement, it would absolutely be in favor of AMD.
The point of the chart is that it alternates over a wide performance range, there isn’t a blanket winner between the company that can’t figure out security and the company that can’t figure out thermals.
Why does that graph show Epyc (server) and Threadripper (workstation) processors in the upper right corner, but not the equivalent Xeons? If you take those away, it would paint a different picture.
Also, a price/performance graph does not say much about which is the superior technology. Intel has been struggling to keep up with AMD technologically the past years, and has been upping power targets and thermal limits to do so … which is one of the reasons why we are here points at headline.
I do hope they get their act together, because we an AMD monopoly would just be as bad as an Intel monopoly. We need the competition, and a healthy x86 market, lest proprietary ARM based computers take over the market (Apple M-chips, Snapdragon laptops,…)
Id guess because I selected single processors and many of the xeons are server oriented with multi socket expected. Given the original post I’m responding to I’m more concerned by desktop grade (10-40k pts multi core) than server grade.
I guess I’m confused by your fundamental point though: if we aren’t looking for raw processing power on a range of workloads, what is the technology you see them winning in?
https://www.cpubenchmark.net/cpu_value_available.html#xy_scatter_graph Don’t see data backing up your claim across a wide range of perf
Links a list where the three top spots substantiate the claim, followed by a comparatively large 8% drop.
To add a bit of nuance: There are definitely exceptions to the claim. But if I had to make a blanket statement, it would absolutely be in favor of AMD.
The point of the chart is that it alternates over a wide performance range, there isn’t a blanket winner between the company that can’t figure out security and the company that can’t figure out thermals.
Why does that graph show Epyc (server) and Threadripper (workstation) processors in the upper right corner, but not the equivalent Xeons? If you take those away, it would paint a different picture.
Also, a price/performance graph does not say much about which is the superior technology. Intel has been struggling to keep up with AMD technologically the past years, and has been upping power targets and thermal limits to do so … which is one of the reasons why we are here points at headline.
I do hope they get their act together, because we an AMD monopoly would just be as bad as an Intel monopoly. We need the competition, and a healthy x86 market, lest proprietary ARM based computers take over the market (Apple M-chips, Snapdragon laptops,…)
Aha because if they included the xeon scalables it show how bad they are doing in the datacenter market.
Why not reserve that frothing at the mouth hatred for something that deserves it.
Id guess because I selected single processors and many of the xeons are server oriented with multi socket expected. Given the original post I’m responding to I’m more concerned by desktop grade (10-40k pts multi core) than server grade.
I guess I’m confused by your fundamental point though: if we aren’t looking for raw processing power on a range of workloads, what is the technology you see them winning in?