If water flowing over continents in rivers is what concentrates salt in our ocean, would a planet that has always been covered in water just be freshwater? The water is just sitting there, not eroding through salts.

  • TranquilTurbulence@lemmy.zip
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    14 days ago

    To some extent, these compounds will inevitably mix together. During the early stages of earth (hadean period), there was a time when it was raining all the time, which meant that all of the minerals on the surface were exposed to water. Naturally, some of those were water soluble, which changed the composition of the growing oceans at the time. Some minerals also underwent various other reactions, which caused them to crumble (weathering) which exposed even more reactive surface. In some cases, you ended up with cracks that allowed the rain water to penetrate deeper into to the crust and find its way to larger deposits of water soluble minerals, such as NaCl. The initial exposure to water only kickstarted the process, but later rain and rivers continued to deliver even more salt to the oceans, resulting in the current salinity over the course of billions of years.

    In order to prevent the initial dissolution of salts, you would need to have a planet without oxygen in any form, so that there would not be any water. If your planet has oxygen and water, but no chlorine, you would still get various other salts such as sulfates, which would make the oceans salty. Either way, it would be a very exotic combination of elements, and might never actually happen.

    If you’re ok with the initial dissolution of salts during the hadean era, but wish to prevent any later dissolution of salts, you could do that by evaporating all the water, just like Venus and Mars did. However, then you won’t have any oceans either, so that’s not ideal.

    Another way would be to make the planet as cool as the moons of Jupiter and Saturn, so that there would be hardly any liquid weather. This way, the midly salty oceans produced in the hadean period would be covered with a sheet of ice, preventing any further weathering and dissolution. Also, a Water World (remember that movie) should produce a similar result, since rain and rivers aren’t in contact the rock surface. However, the salt from the hadean period would still be there, so this isn’t ideal either.

    The dead sea mechanism is also an interesting alternative. Just replicate that mechanism at a massive scale, and you have relatively fresh water oceans and massive dead seas that just accumulate all of the salt from other bodies of water. Those surface salt deposits would need to be close to the equator so that the sun can evaporate all of the water that flows into them. Those deposits would also need to be lower than the rest of the terrain, and they would need to be connected to the surrounding oceans via rivers, which is a tall order IMO.

    Over the course of billions of years, some of those salt deposits might get pushed into the fresh water oceans, which would mess up the whole thing. I think this setup is not stable for billions of years, but it could be possible for a certain period anyway. Maybe this could be a good place for a scifi story. Imagine a planet with massive fresh water oceans and several saturated salt pools near the equator.

    • HotDayBreeze@lemmy.worldOP
      link
      fedilink
      arrow-up
      0
      ·
      14 days ago

      This is all very interesting and pertinent. I was wondering about the hadean period, and whether you could actually get to an ocean world without first having continents with a water cycle. I don’t know enough about planetary formation to conclude further. Thanks for pointing me to the hadean period, I will read more about that.

      You might misunderstand my comment about the dead sea. The dead sea actually precipitates salt crystals onto the bottom of the sea. No land is required in this strange process. I don’t think it’s clear to say whether this happens because of the extreme salinity of the dead sea, or if the extreme salinity just makes it the only place we observe this rapid desalination on human time scales. I offered this as perhaps the most striking example that salts dissolved in water are not necessarily a stable state on a timeline of billions of years.