When German journalist Martin Bernklautyped his name and location into Microsoft’s Copilot to see how his articles would be picked up by the chatbot, the answers horrified him. Copilot’s results asserted that Bernklau was an escapee from a psychiatric institution, a convicted child abuser, and a conman preying on widowers. For years, Bernklau had served as a courts reporter and the AI chatbot had falsely blamed him for the crimes whose trials he had covered.

The accusations against Bernklau weren’t true, of course, and are examples of generative AI’s “hallucinations.” These are inaccurate or nonsensical responses to a prompt provided by the user, and they’re alarmingly common. Anyone attempting to use AI should always proceed with great caution, because information from such systems needs validation and verification by humans before it can be trusted.

But why did Copilot hallucinate these terrible and false accusations?

  • snooggums@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    1 month ago

    The users’ assumption/expectation of the output being factual is what is wrong.

    So randomly spewing out bullshit is the actual design goal of AI models? Why does it exist at all?

    • ApexHunter@lemmy.ml
      link
      fedilink
      English
      arrow-up
      0
      ·
      1 month ago

      They’re supposed to be good a transformation tasks. Language translation, create x in the style of y, replicate a pattern, etc. LLMs are outstandingly good at language transformer tasks.

      Using an llm as a fact generating chatbot is actually a misuse. But they were trained on such a large dataset and have such a large number of parameters (175 billion!?) that they passably perform in that role… which is, at its core, to fill in a call+response pattern in a conversation.

      At a fundamental level it will never ever generate factually correct answers 100% of the time. That it generates correct answers > 50% of the time is actually quite a marvel.

      • snooggums@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        1 month ago

        They’re supposed to be good a transformation tasks. Language translation, create x in the style of y, replicate a pattern, etc. LLMs are outstandingly good at language transformer tasks.

        That it generates correct answers > 50% of the time is actually quite a marvel.

        So good as a translator as long as accuracy doesn’t matter?